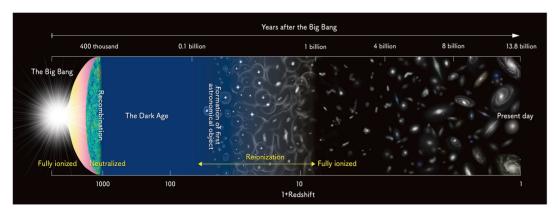
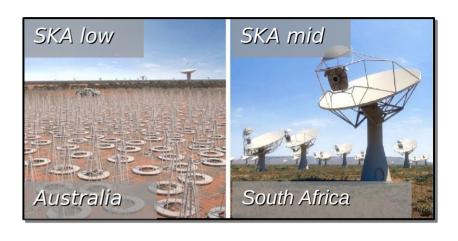
Source detection and characterization using YOLO-CIANNA in simulated radio data

David Cornu

LUX, Observatoire de Paris, PSL

CIANNA workshop 2025, Paris


The Square Kilometer Array



Future largest radio-telescope

Evolution of the universe and astrophysical objects

Construction phase started ! ETA : ~2028

Big Data

~700 PB / year (stored)

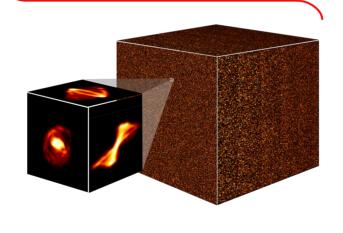
~1.5 millions 500 GB HDD / year

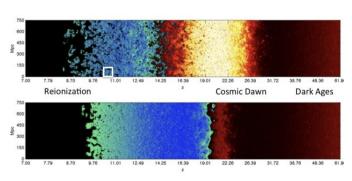
Complex data

Noise

Confusion Morphology

→ Requires new innovative methods




Simulated datasets that should resemble typical SKA data products

Objective: prepare astronomers, stimulate the creation of new data analysis pipeline

Source detection and characterization

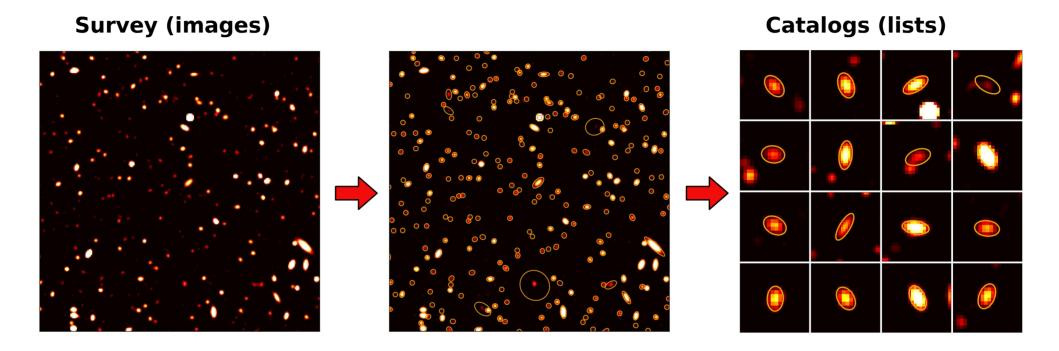
SDC1: Continuum 2D images 3 integration times x 3 bands

Each image = 4 GB

From Dec 2018 to April 2019

SDC2: Hyperspectral cube of HI emission

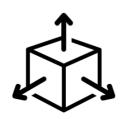
Full cube = 1 TB

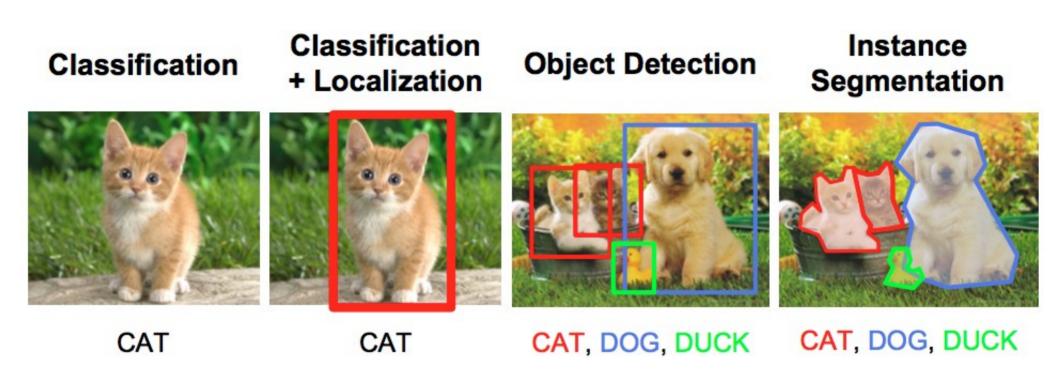

From Feb 2021 to July 2021

SDC3: 21 cm emission Visibility and Image

Full size ~ 7 TB

EoR Focused, 2023-2025

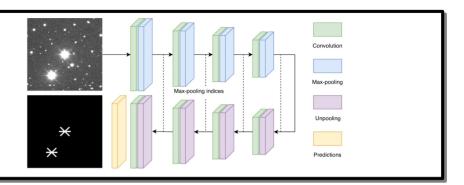

Astronomical source detection and characterization


Automated detection tools:

PyBDSF, SFIND, SourceExtractor, BLOBCAT, Aegan, Selavy, SoFiA, ...

Problem:

- 1 Classical method scalability
- 2 Robustness and completeness



*Image from Stanford Deep Learning course cs224

5 / 25

U-Nets

Pros: produce segmentation maps, access to latent space, ...

Region-based

Methods: R-CNN (Fast and Faster), SPP-net, Mask R-CNN, ...

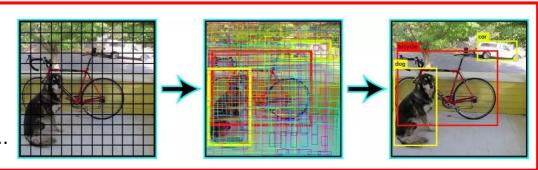
Pros: Best accuracy, ...

1. Input image

2. Extract region proposals (~2k)

4. Classify regions

tymonitor? no.

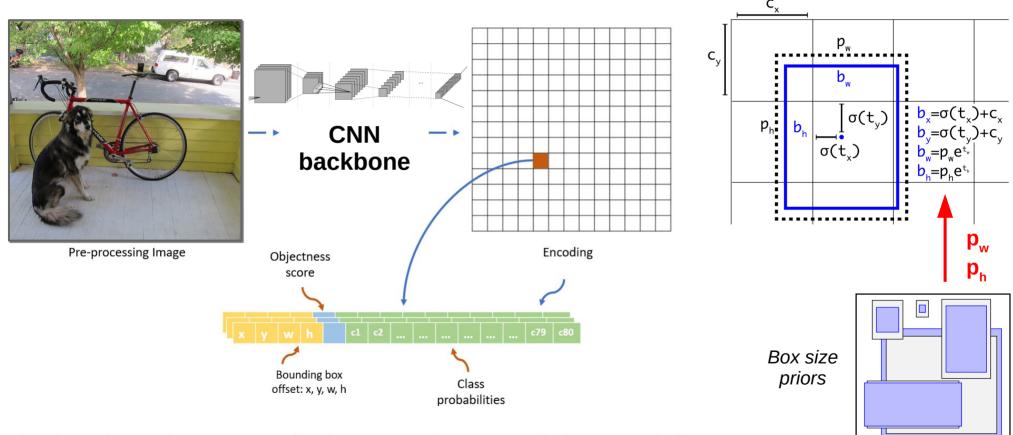

aeroplane? no.

→ person? yes.

Regression-based

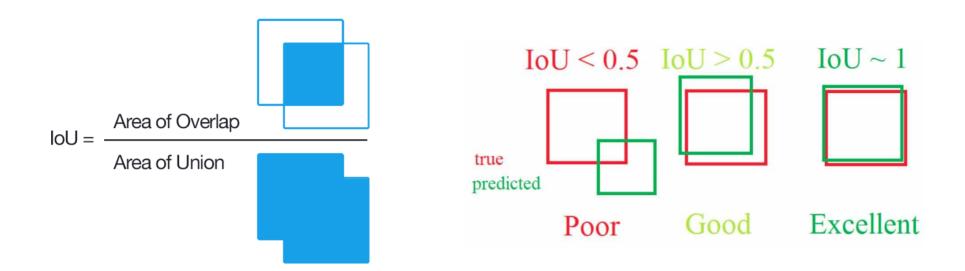
Methods: SSD (Single Shot Detector), YOLO (You Only Look Once), ...

Pros: Very Fast, straightforward architecture,...

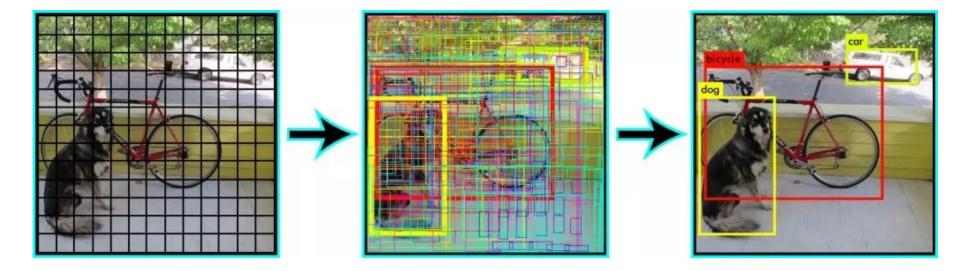


warped region

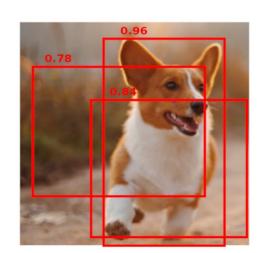
The You Only Look Once (YOLO) detector

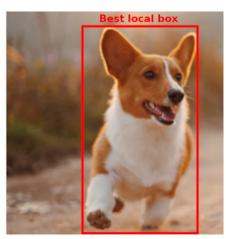

Originally introduced in Redmon et al. 2015 (V1), 2016 (V2), 2018 (V3)

*Images from blog post and Redmon papers

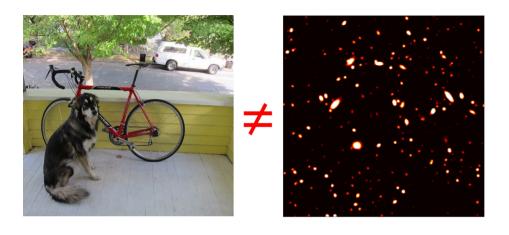

The last layer is conv. = the boxes « share » weights spatially.

The output is a 3D cube encoding all possible boxes on the output grid.



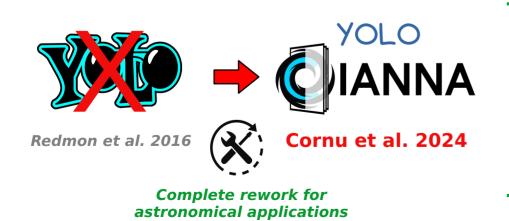

For each box the network will predict an "objectness" score defined as:

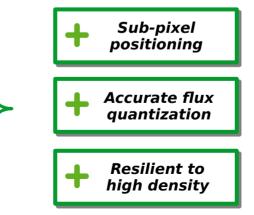
$$Pr(\text{object}) * IOU(b, \text{object}) = \sigma(t_o)$$

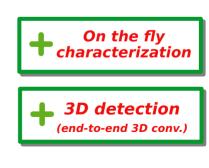

- 1) Most probable boxes are kept using a threshold in objectness
- 2) Removes multiple detections of single objects using Non Max Supression

Using DL methods for astronomical data

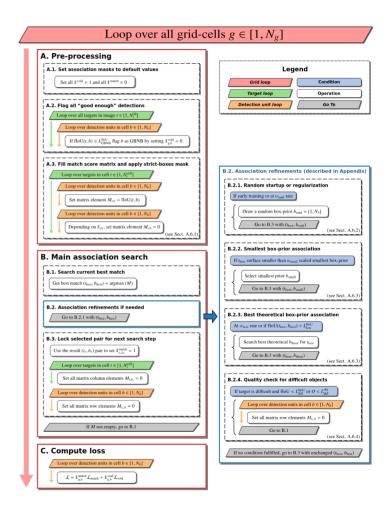
Astronomical images and objects do not fulfill classical implicit biases


Extreme density (high or low)




Large dynamic

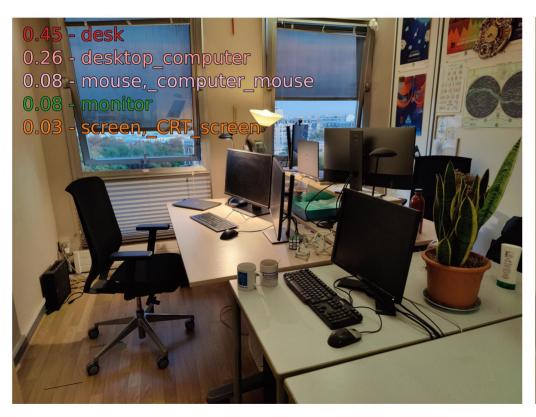
Noise



Well, its long to explain → Cornu et al. 2024 (42 pages paper, 11 of method)!

→ Don't worry we've made the hard work for you.

$$\mathcal{L} = \sum_{i=0}^{N_g} \sum_{j=0}^{N_b} \mathbb{1}_{ij}^{\text{match}} \left(\lambda_{\text{pos}} \qquad \left[(o_{ij}^x - \hat{o}_{ij}^x)^2 + (o_{ij}^y - \hat{o}_{ij}^y)^2 \right] \right. \\
+ \lambda_{\text{size}} \qquad \left[(o_{ij}^w - \hat{o}_{ij}^w)^2 + (o_{ij}^h - \hat{o}_{ij}^h)^2 \right] \\
+ \lambda_{\text{class}} \qquad \mathbb{1}_{ij}^C \sum_{k}^{N_C} \left(-\hat{C}_{ij}^k \log(C_{ij}^k) \right) \\
+ \lambda_{\text{param}} \qquad \mathbb{1}_{ij}^p \sum_{k}^{N_p} \gamma^k \left(p_{ij}^k - \hat{p}_{ij}^k \right)^2 \\
+ \lambda_{\text{prob}} \qquad \mathbb{1}_{ij}^P \left(P_{ij} - 1 \right)^2 \\
+ \lambda_{\text{obj}} \qquad \mathbb{1}_{ij}^O \left(O_{ij} - \text{fIoU}_{ij} \right)^2 \right) \\
+ \sum_{i=0}^{N_g} \sum_{j=0}^{N_b} \mathbb{1}_{ij}^{\text{void}} \lambda_{\text{void}}^j \left(\lambda_{\text{prob}} \left(P_{ij} - 0 \right)^2 + \lambda_{\text{obj}} \left(O_{ij} - 0 \right)^2 \right).$$




Examples of YOLO-CIANNA detections

Model pre-trained on ImageNet and then trained on the COCO datasets independently.



Examples of YOLO detections

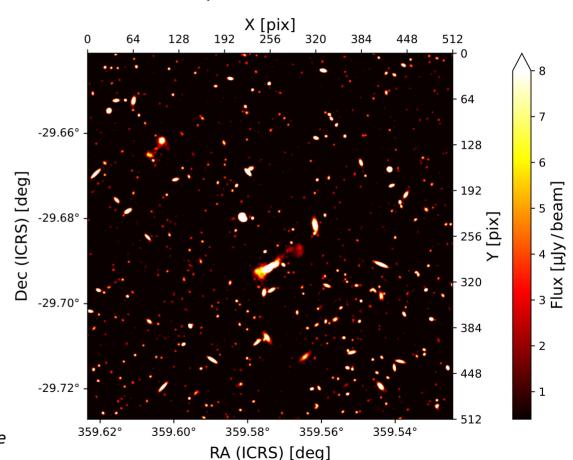
Result using a YOLO detector with a darknet-19 "like" backbone trained on COCO. The network run at 690 ips at a 416p resolution on an RTX 4090.

Data:

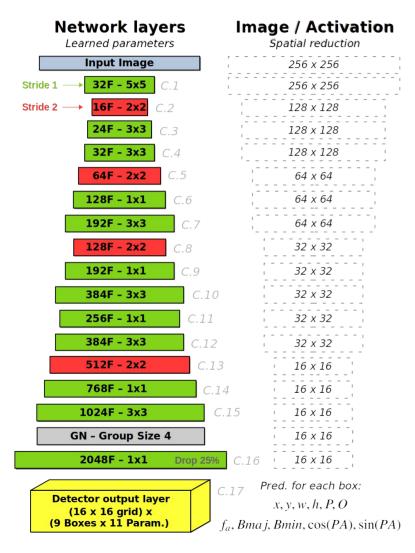
Simulated continuum image:

- 5.5 square degree area (pixel size 0.6")
- 560 MHz, 1000h integration time
- 4GB image (32,768 pixel square)

The challenge:


- 1. Find the sources (RA, Dec)
- 2. Characterize each source:
 - → (Flux, Bmaj, Bmin, PA, ...)

Training labels provided for a subpart of the image (5% of the surface, ~34 000 sources).


→ SDC1 summary paper, Bonaldi et al. 2021

SKA SDC1 took place early 2020. Data from the challenge are still freely accessible on the dedicated web-page.

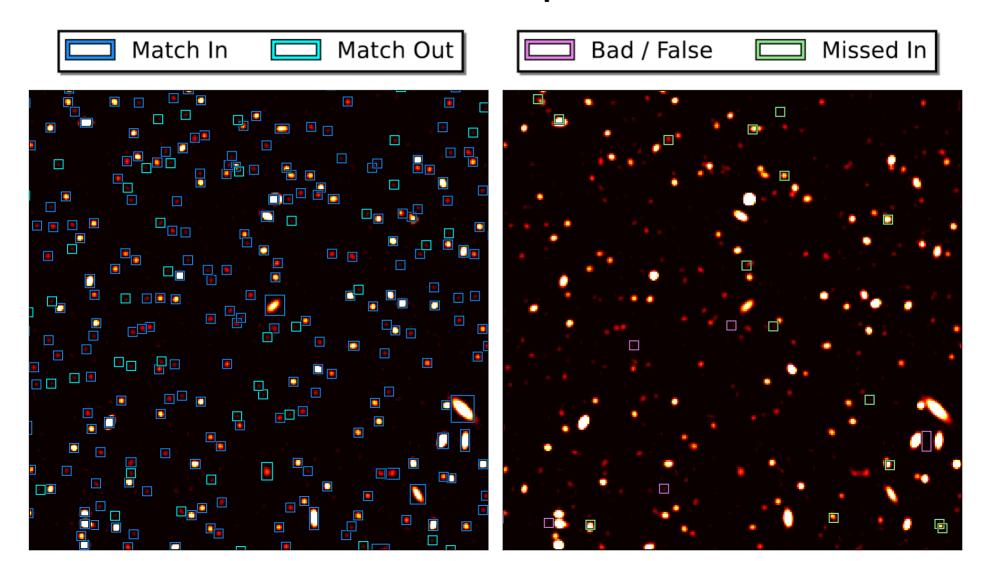
Example 512² sub-field

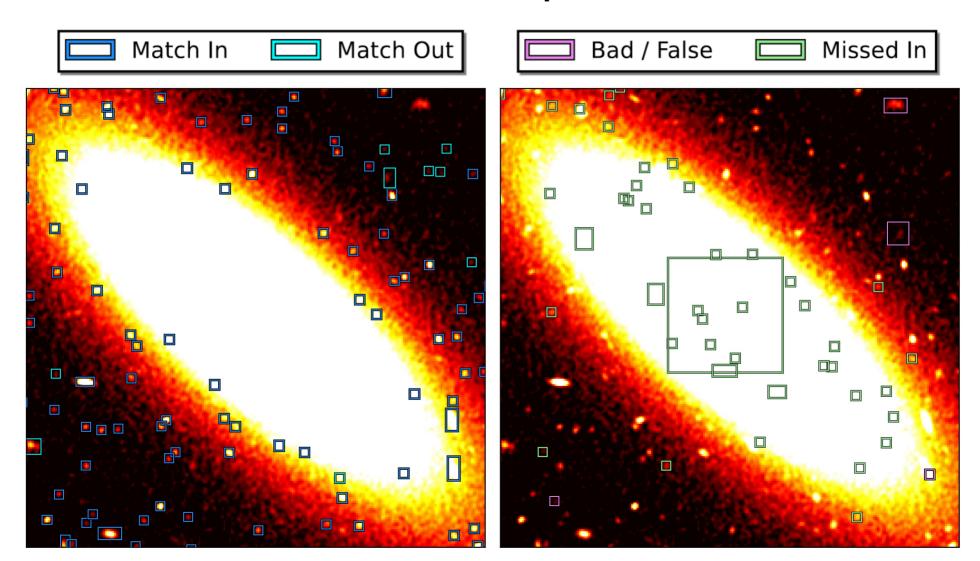
Custom SDC1 model

Architecture:

- 17 conv. layers \rightarrow ~13 Million parameters (~50MB)
 - → +8% in score compared to the classical darknet19 backbone
- **9 box priors** ranging from 10 to 32 pixels
- 5 additional parameters: Flux, Bmaj, Bmin, cos(PA), sin(PA)

Training the network using VIANNA


- **256x256** cutouts are randomly selected in the training area (54 MB)
- ~ **34000 sources** in the selected training catalog
- Data are augmented based on cutout position and flips


Using a single RTX 4090 GPU, training time is ~ 4 hours

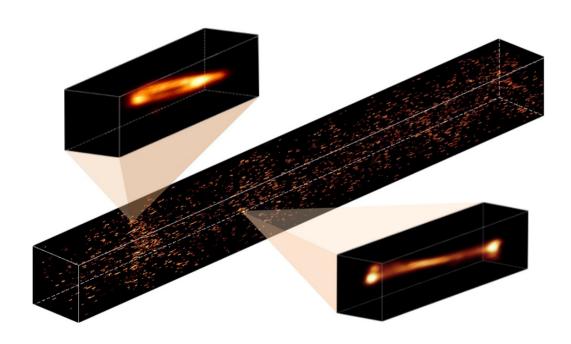
Inference:

- The full SKA SDC1 image is split in 512x512 regions with an overlap of 32 pixels, \rightarrow ~4500 images
- Overlapping regions are filtered with a dedicated secondary NMS

The full inference in FP16-TC takes $\sim 8 \text{ sec} \rightarrow 130 \text{ Mpix/s}$

Results comparison

Based on Bonaldi et al. 2021 + submitted catalogs


$$s_i = \frac{1}{7} \sum_{j=1}^{7} s_i^j \qquad M_s = \sum_{i=1}^{N_{match}} s_i - N_{false}$$

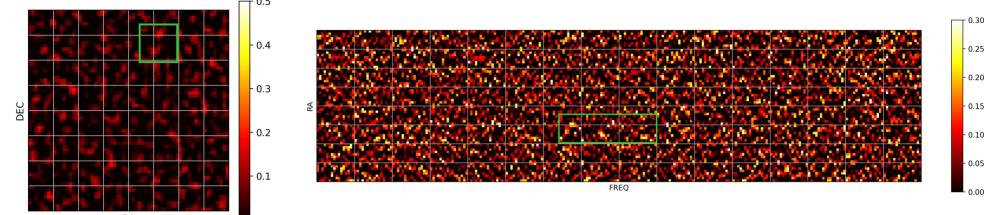
Average persource score

Team (method)	M_s (Score)	N_{det}	N_{match}	N_{false}	$N_{bad} \in N_{false}$	Purity	\bar{s}	
Post-challenge results)
MINERVA (YOLO-CIANNA)	480450	724480	680000	44480	16839	93.86%	0.7719	After
\hookrightarrow purity-focus thresholds	418434	541542	536412	5130	2506	99.06%	0.7896	challenge
JLRAT2 (JSFM2)	298201	502146	484212	17934	2274	96.43%	0.6529	ending
Original challenge results								,
Engage-SKA (PROFOUND)	200939	421992	418384	3608	2677	99.15%	0.4889)
Shanghai (multiple methods)	158841	292646	291553	1093	698	99.63%	0.5486	Original
ICRAR (CLARAN)	142784	279898	259806	20092	6875	92.82%	0.6269	leaderboard
7 other teams, one other	J							
	Post-challenge results MINERVA (YOLO-CIANNA)	Post-challenge results MINERVA (YOLO-CIANNA) 480450	Post-challenge results MINERVA (YOLO-CIANNA) 480450 724480 → purity-focus thresholds 418434 541542 JLRAT2 (JSFM2) 298201 502146 Original challenge results Engage-SKA (PROFOUND) 200939 421992 Shanghai (multiple methods) 158841 292646	Post-challenge results MINERVA (YOLO-CIANNA) 480450 724480 680000 → purity-focus thresholds 418434 541542 536412 JLRAT2 (JSFM2) 298201 502146 484212 Original challenge results Engage-SKA (PROFOUND) 200939 421992 418384 Shanghai (multiple methods) 158841 292646 291553 ICRAR (CLARAN) 142784 279898 259806 7 other teams, one other ML attempt	Post-challenge results MINERVA (YOLO-CIANNA) 480450 724480 680000 44480 → purity-focus thresholds 418434 541542 536412 5130 JLRAT2 (JSFM2) 298201 502146 484212 17934 Original challenge results Engage-SKA (PROFOUND) 200939 421992 418384 3608 Shanghai (multiple methods) 158841 292646 291553 1093 ICRAR (CLARAN) 142784 279898 259806 20092 7 other teams, one other ML attempt	Post-challenge results MINERVA (YOLO-CIANNA) 480450 724480 680000 44480 16839 → purity-focus thresholds 418434 541542 536412 5130 2506 JLRAT2 (JSFM2) 298201 502146 484212 17934 2274 Original challenge results Engage-SKA (PROFOUND) 200939 421992 418384 3608 2677 Shanghai (multiple methods) 158841 292646 291553 1093 698 ICRAR (CLARAN) 142784 279898 259806 20092 6875 7 other teams, one other ML attempt	Post-challenge results MINERVA (YOLO-CIANNA) 480450 724480 680000 44480 16839 93.86% → purity-focus thresholds 418434 541542 536412 5130 2506 99.06% JLRAT2 (JSFM2) 298201 502146 484212 17934 2274 96.43% Original challenge results Engage-SKA (PROFOUND) 200939 421992 418384 3608 2677 99.15% Shanghai (multiple methods) 158841 292646 291553 1093 698 99.63% ICRAR (CLARAN) 142784 279898 259806 20092 6875 92.82% 7 other teams, one other ML attempt	Post-challenge results MINERVA (YOLO-CIANNA) 480450 724480 680000 44480 16839 93.86% 0.7719 purity-focus thresholds 418434 541542 536412 5130 2506 99.06% 0.7896 JLRAT2 (JSFM2) 298201 502146 484212 17934 2274 96.43% 0.6529 Original challenge results Engage-SKA (PROFOUND) 200939 421992 418384 3608 2677 99.15% 0.4889 Shanghai (multiple methods) 158841 292646 291553 1093 698 99.63% 0.5486 ICRAR (CLARAN) 142784 279898 259806 20092 6875 92.82% 0.6269 7 other teams, one other ML attempt

→ SDC1 is still a very interesting dataset for source detection pipeline development!

SCIENCE DATA CHALLENGE 2

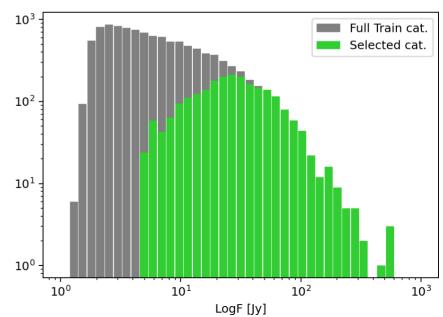
Data: a 3D cube of simulated HI emission

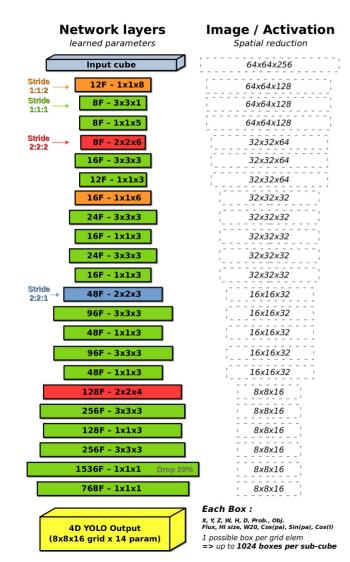

- 20 square degree area
- 950 to 1150 MHz frequency (30KHz res; z = 0.235-0.495)
- 2000h integration time
- Near 1 TB cube (5851 x 5851 x 6668)

The challenge:

- 1. Find the sources (RA, Dec, Freq)
- 2. Characterize each source:
 - → Flux, HI size, line width, PA, Inclination

→ SDC2 summary paper, Hartley et al. 2023


Selection function difficulties


Selection function based on brightness or SNR are not sufficient to fully represent the noisy 3D information.

→ "Bootstrap learning" (~active learning):

After a first training, un-selected true sources with high predicted objectness can be re-injected in the training sample.

Model modifications for SDC2

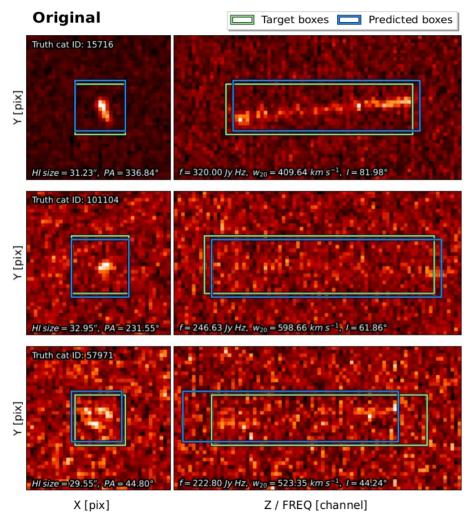
YOLO parameters:

- Generalized to 3D detection
- 23 layers ~ 4 Million parameters
- 1 single box prior per grid element
- Predict 6 additional source parameters
- No class prediction

Training the network using **CIANNA**

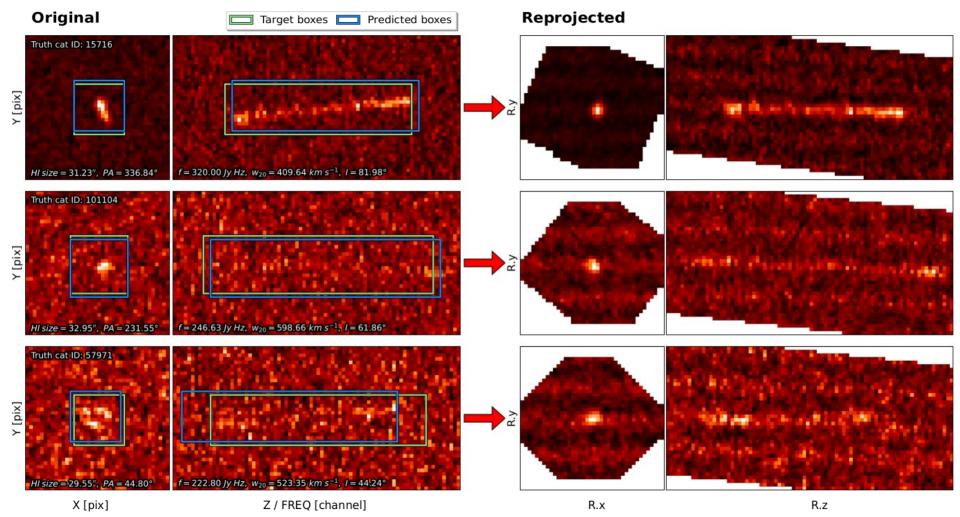
- **64x64x256** cubes are randomly selected in the training area (40 GB)
- Around **2000 sources** in the selected train catalog
- Data are augmented using shifting and flips

Using a single RTX 4090 GPU


→ Training time up to **12 hours** (already good results after 6-8h).

Inference:

- The full SKA SDC2 1 TB cube is split in regions with large overlaps
- Box in overlapping regions are filtered with a dedicated NMS


The full cube prediction takes ~1 hour (vastly dominated by data loading time) using a single RTX 4090 (raw 260 ips)

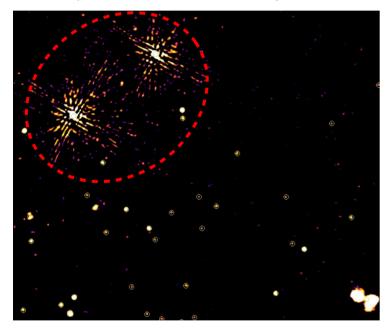
Detection examples

Images are based on 40x40x120 cutouts centered on a source. Signal is averaged over the source dimension in the projected axis.

Detection examples

Images are based on 40x40x120 cutouts centered on a source. Signal is averaged over the source dimension in the projected axis.

Results from


LEADERBOARD

-	Team name	Score	$N_{ m d}$	$N_{ m m}$	Accuracy	Hartley et al. 2023
ML	MINERVA New*	23482	34441	31709	83	Minerva: *YOLO-only score, obtained after the challenge end
ML	MINERVA	23254	32652	30841	81	MINERVA: YOLO and CHADHOC combination
ML + SoFiA	FORSKA-Sweden	22489	33294	31507	77	FORSKA: U-Net segmentation,
SoFiA	Team SoFiA	16822	24923	23486	78	parameters using SOFIA
SoFiA	NAOC-Tianlai	14416	29151	26020	67	(Håkansson et al. 2023)
SoFiA	HI-FRIENDS	13903	21903	20828	72	
Wavelets + ML	EPFL	8515	19116	16742	65	EPFL: Denoising with 3D wavelet filtering,
SoFiA	Spardha	5615	18000	13513	75	identification with jointed likelihood, Parameters with several CNNs
SoFiA	Starmech	2096	27799	17560	70	
ML	JLRAT	1080	2100	1918	66	JLRAT: Region proposal CNN detection, classical for parameters
Wavelets + ML	Coin	-2	29	17	60	Coin: Multiple CNNs for detection and
ML	HIRAXers	-2	2	0	-	dedicated CNNs for parameters HIRAXers: Multiple CNNs for both
Other	SHAO	-471	471	0	-	detection and for parameters

YOLO-CIANNA 3D SDC2 → Cornu et al. 2025

Challenges of switching to real data

Example on the LoTSS survey (LOFAR)

Difficulties: Artifacts / Noise / Resolution / Sizes / Morphology

How to define the training sample?

Use costly observations on few sources

Pros: Very robust labels **Cons:** few examples & imbalance

Use classical detection methods!

Pros: Easy to use, large samples **Cons:** possible bias

Use simulations (e.g SKA SDCs models)

Pros: infinite examples **Cons:** bias, instrument model required

Use Citizen Science (e.g Radio Galaxy Zoo)

Pros: "Easy" Cons: bias / errors, limited to human capability

Combine all of the above!

Pros: Very complete / diverse **Cons:** difficult to balance

Self / Active - Learning or Unsupervised
 Train with one sample, then use one of the above to refine « new candidates », or try various flavor of unsupervised methods

Pros: limits defined by the method and the data themselves, less human bias.