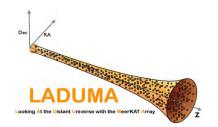
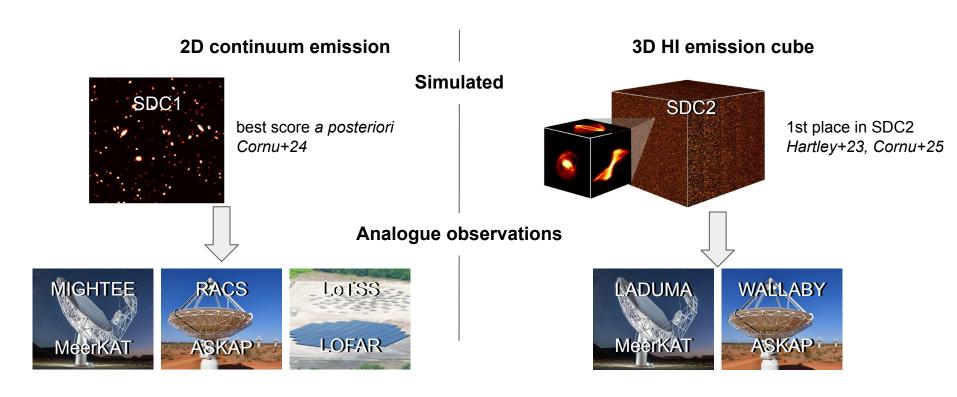
Automatic source finding in SKA precursor/pathfinder surveys with YOLO-CIANNA

Adrien ANTHORE1, L. Chemin1, D. Cornu2

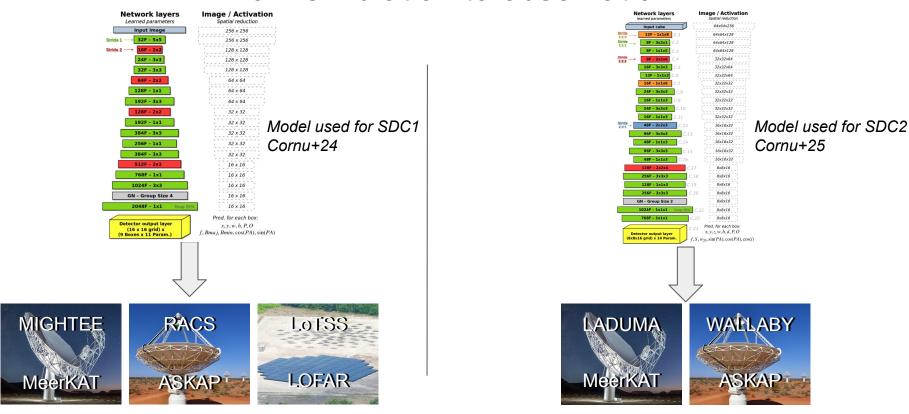
¹ Observatoire Astronomique de Strasbourg ² LUX, Observatoire de Paris

CIANNA user workshop, Paris 2025

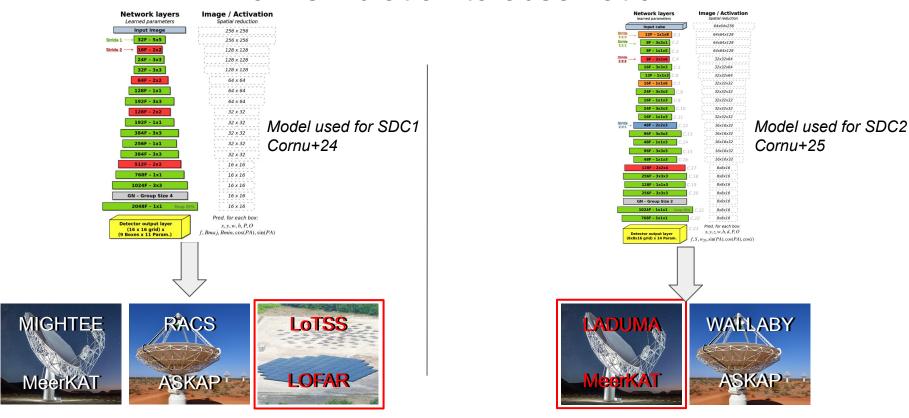




Objective: deploy YOLO-CIANNA and adapt it to the observations

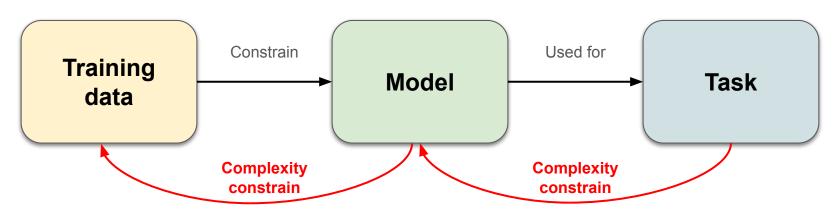


Objective: deploy YOLO-CIANNA and adapt it to the observations



Objective: deploy YOLO-CIANNA and adapt it to the observations

Training dataset for supervised method



This training dataset must:

- Be complete: all specificities of the data must be represented (objects, effects, contexts, ...)
- Have pure labels: labels should be as close as possible to the expectancy.

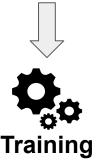
Not/wrongly labeled target:

→If the network detects it, will lower the probability of all the same kind of sources

Labeled questionable target:

→If the network detects it, may increase the probability of detecting noise

How to train the model for observational data?



1st option: using observational data

Pros:

 Contain all instrumental effects and observational limitations

Cons:

- Limitation in examples
- Scarcity effects
- Difficult to label data

Because it requires a lot of exemple: labeling a large portion of the survey makes ML useless

How to train the model for observational data?

Pros:

- As many examples as necessary
- Compensating for scarcity effects

Cons:

Potentially biased or simplistic:

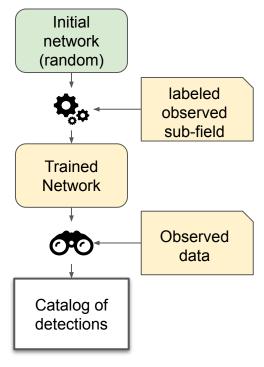
Physical model

Instrumental Model

In practice the two approaches can be combined

Approaches

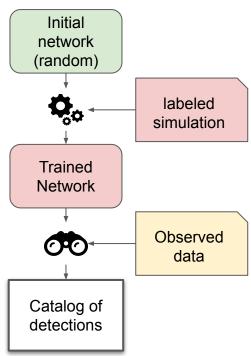
Observed data only



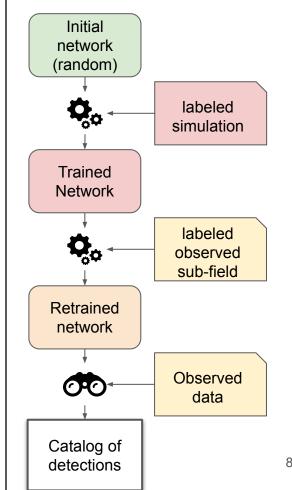
Inference

Training

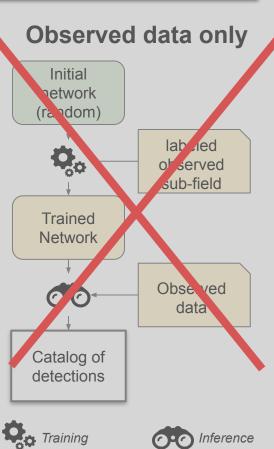
Direct application



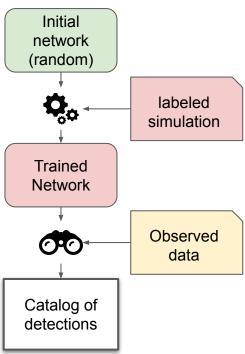
Transfer-Learning



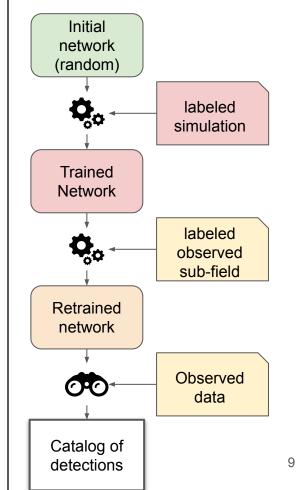
Approaches

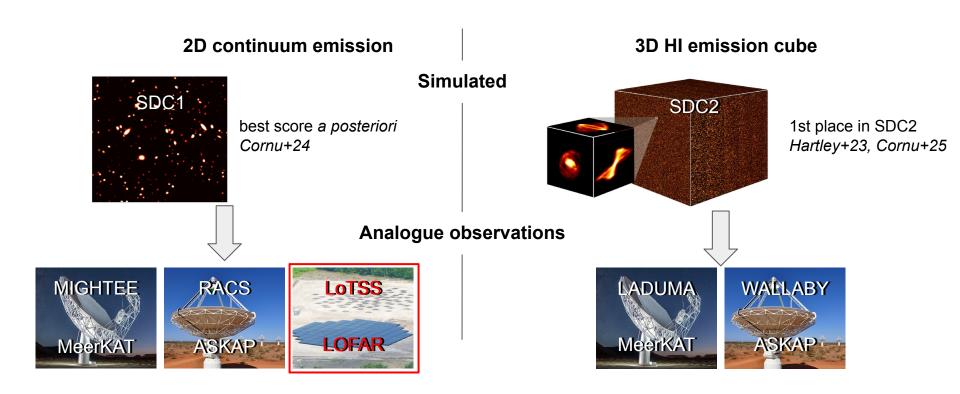


Direct application

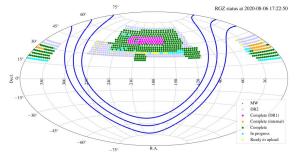


Transfer-Learning





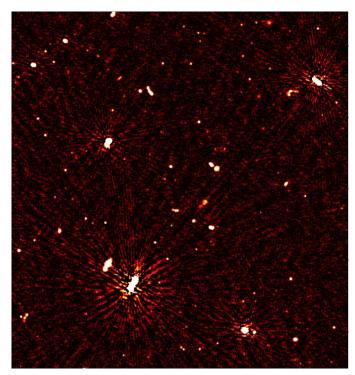
LOw Frequency ARray (LOFAR)



LOFAR Two meter Sky Survey (LoTSS) DR2: Shimwell et al. 2022

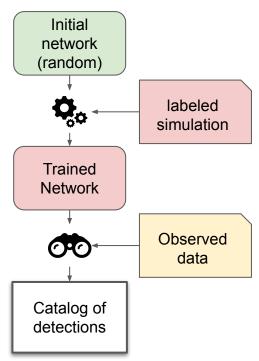
- Frequency: 120-168 MHz
- 27% of the Northern hemisphere
- 4,396,228 cataloged sources from PyBDSF
- 841 mosaics

subfield of 25x25 arcmim²

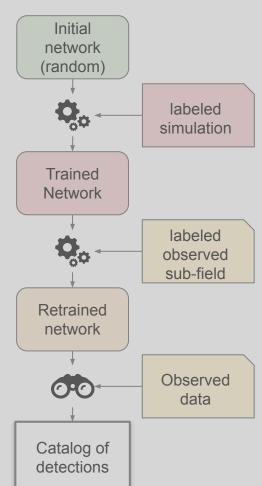


Approaches

Direct application

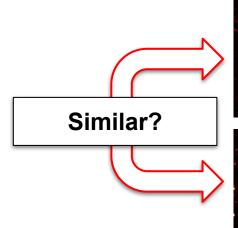


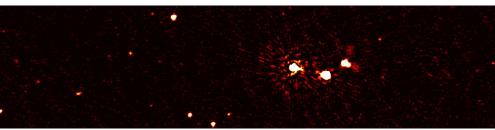
Transfer-Learning

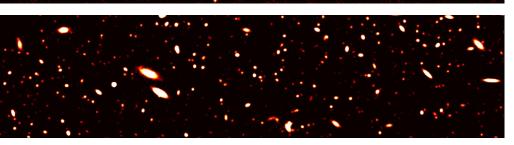


Application of the method to LoTSS data

The inference data must match the training data: is it the case?







LoTSS DR2 (Observational) 144 MHz

subfields of 150x700 pix

Simulated data (SKAO SDC1) 560 MHz

Similarities:

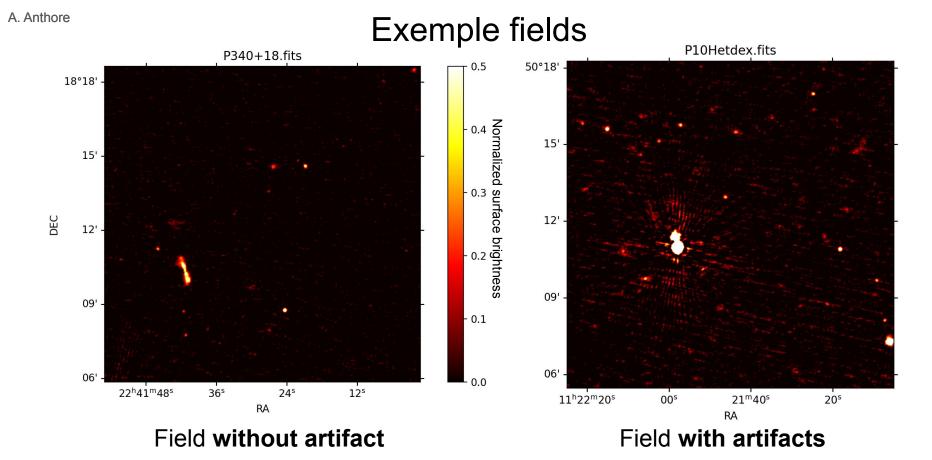
- Same point-like sources
- Luminosity profiles
- Blending

Dissimilarity:

- Resolution
- Pixels dynamics/Sensitivity
- Morphological diversity
- Instrumental specificities

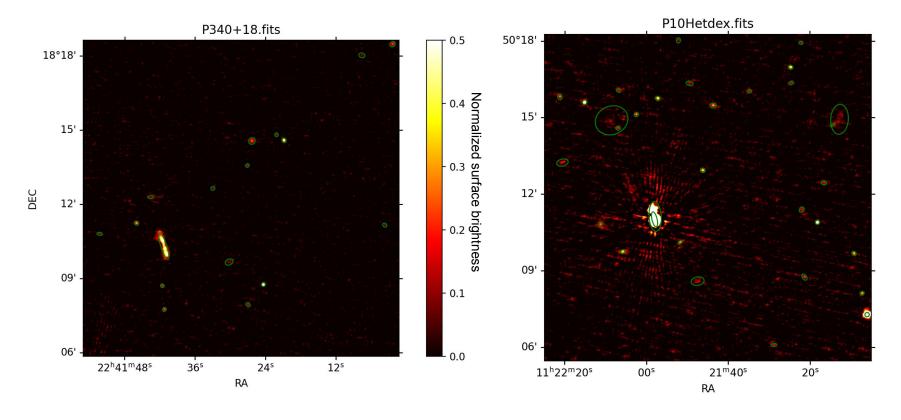
Similar enough, but requiere:

- Match the pixel dynamics
- Match the sampling



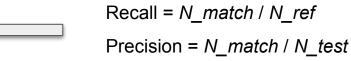
Object of interest: Point-like sources; Extended sources; Artifacts around bright sources; Blending; Other artifacts

Evaluation on reference

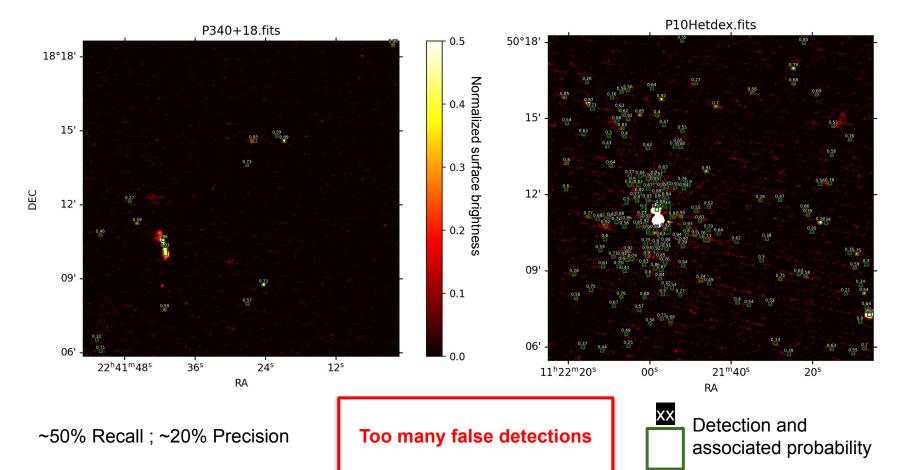


Reference: LoTSS DR2 (Shimwell et al. 2022)

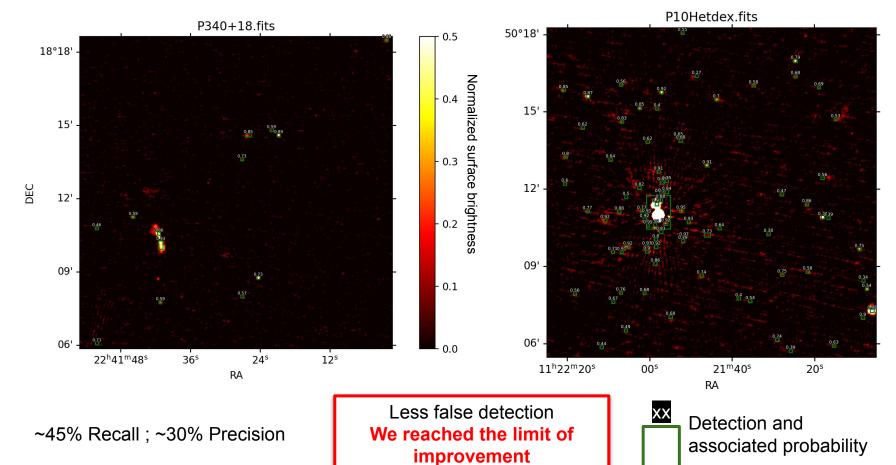
Methode: PyBDSF



Results: "Direct" approach

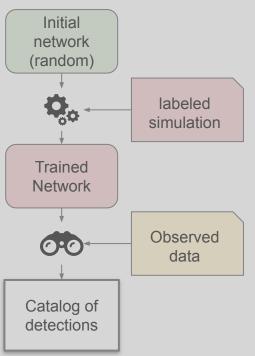


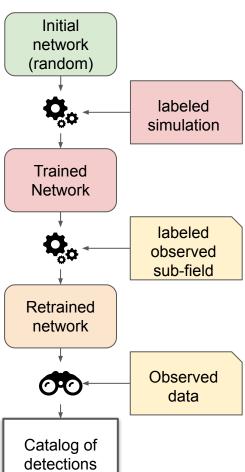
Results: "Direct" approach + post-process



Approaches

Direct application

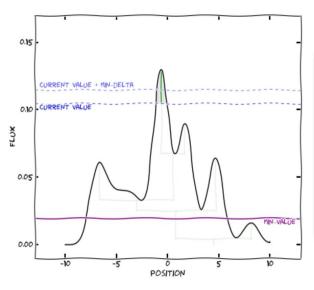




Method for building the training set

Catalog optimized for ML detection ≠ existing catalogs today

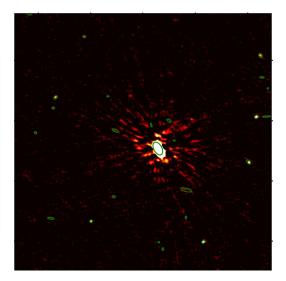
Choice of method: Astrodendro



Credit: https://dendrograms.readthedocs.io

Labeling process

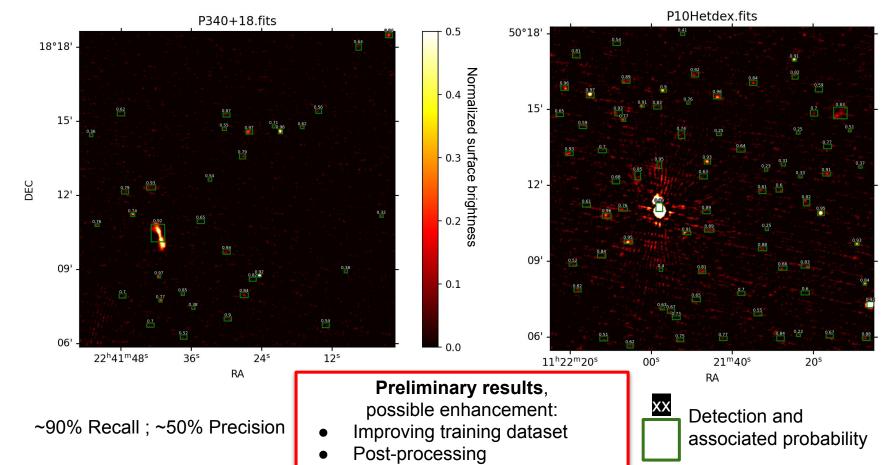
- 1) Detection in a subfield
- 2) Filtering after detection
- 3) IR / Optical counterparts



example of the training area 13x13 arcmin²

By combining classical detection method with counterparts: We manage to construct a reliable training dataset

Preliminary results: "Transfer-Learning" approach

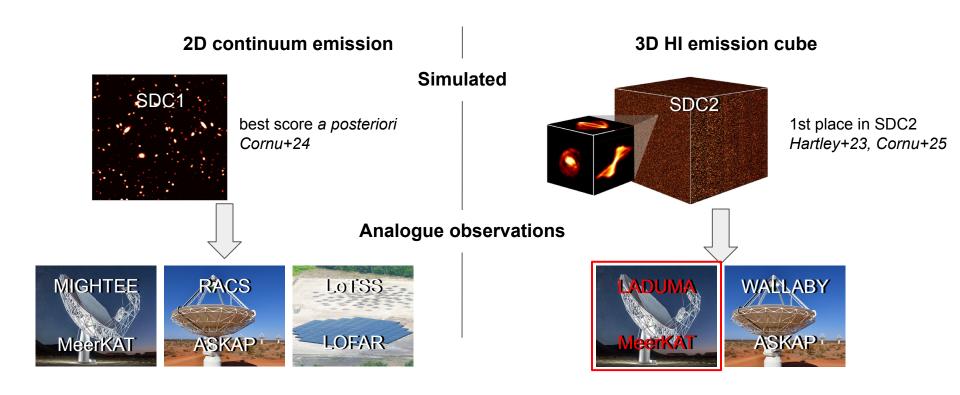


LoTSS DR2 summary

Our **YOLO-CIANNA model** with LoTSS DR2 data:

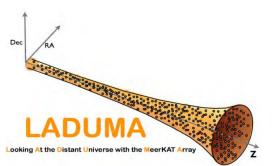
- Quick: Training: not more than 8h;
 Inference ~ 5 sec/mosaics
 Inference and Training on Tesla V100 GPU
- Complete: High level of recall (w.r.t. LoTSS dr2)
 Best: ~90% Recall; ~50% Precision

Still requires more exploration of the data, confirmations, new approach?, and also **technical exploration** (Network architectures, simulations, ...) and more

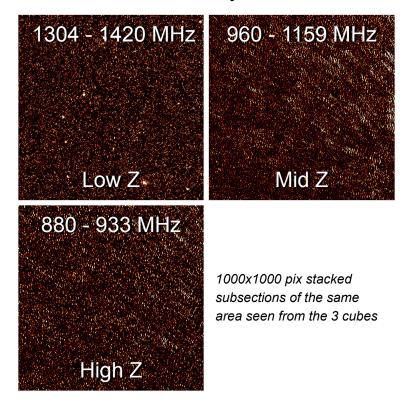


LADUMA

Looking At the Distant Universe with the MeerKAT Array

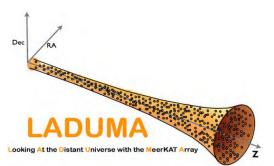


- 3 hyperspectral cubes (~310 GB)
- Frequencies from 880 to 1420 MHz
- ~ 1 sq. deg. coverage
- 243 sources detected by SoFiA (lowest redshift cube)

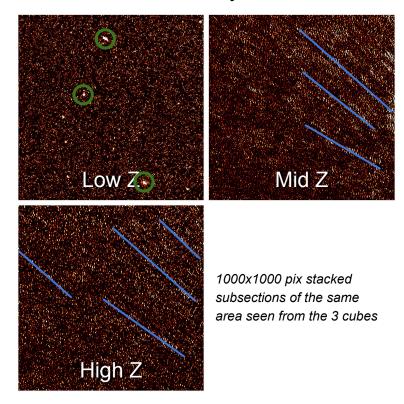


LADUMA

Looking At the Distant Universe with the MeerKAT Array

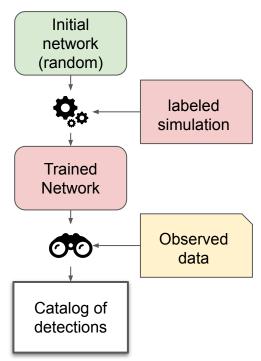


- 3 hyperspectral cubes (~310 GB)
- Frequencies from 880 to 1420 MHz
- ~ 1 sq. deg. coverage
- 243 sources detected by SoFiA (lowest redshift cube)

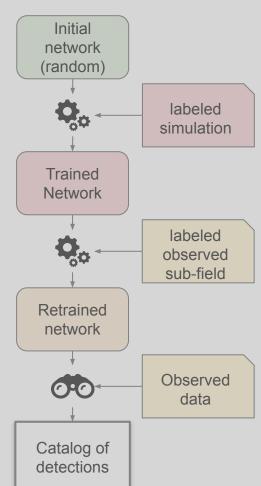


Approaches

Direct application

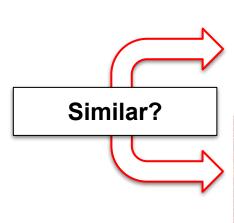


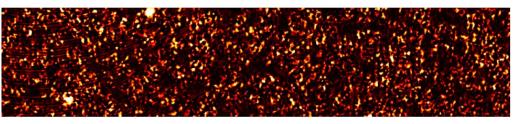
Transfer-Learning



Direct application to LADUMA data

The inference data must match the training data: is it the case?





LADUMA data low z cube (Observational)

subfields of 150x700 pix

Idealized Simulated data (SKAO SDC2)

Similarities:

- Same point-like sources
- Luminosity profiles

Dissimilarity:

- Resolution (space and freq)
- Pixels dynamics/Sensitivity
- Morphological diversity
- Instrumental specificities

Similar enough, but requires:

- Match the pixel dynamics
- Match the sampling

Preliminary results: Low z cube

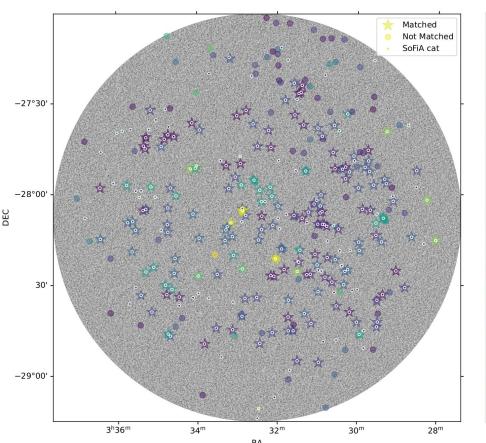
1.40

- 1.38

Lednency - 1.36

- 1.34

- 1.32



Raw output: 354 detections

After (light) post-process: 283 detections

	DR1 catalog* (243 sources)	Not DR1 catalog*
Y-C model** (283 sources)	176	107
Not Y-C model**	67	

Recall ~ 73%; Precision ~ 62%

Among the 107 unmatched detections: 80 are not at all close to DR1 catalog* detections

Recall = N_match / N_ref

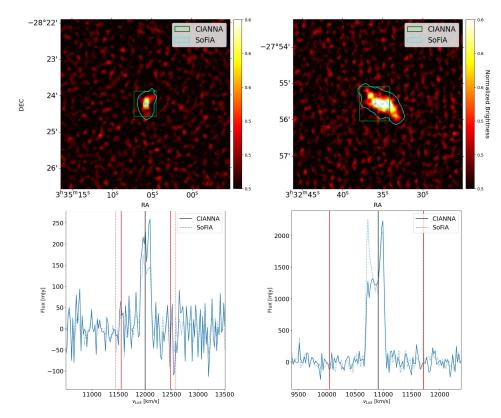
Precision = N_match / N_test

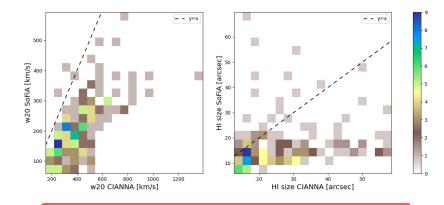
^{*}LADUMA Lowz catalog d.r. 1 derived from SoFiA and more

^{**}Our YOLO-CIANNA model trained with a portion of SDC2 data smoothed in frequency

Preliminary results: Low z cube

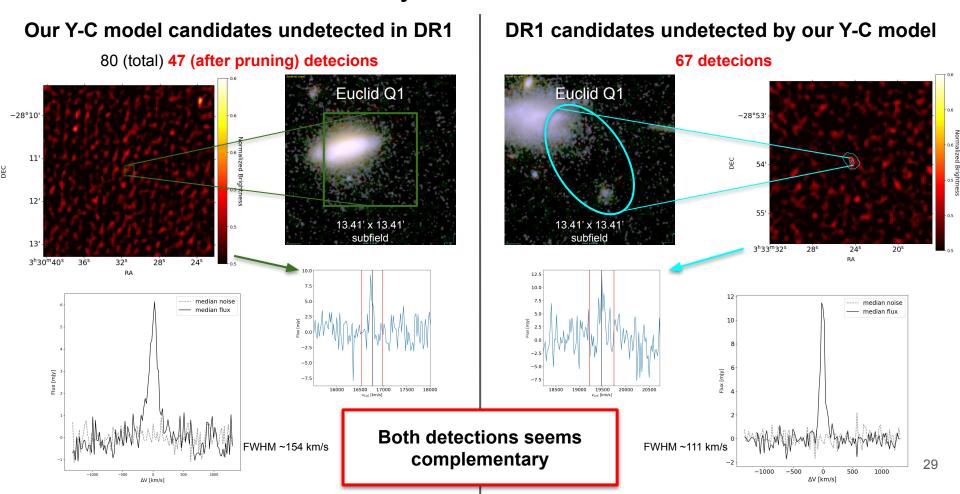
Our Y-C model matched detections



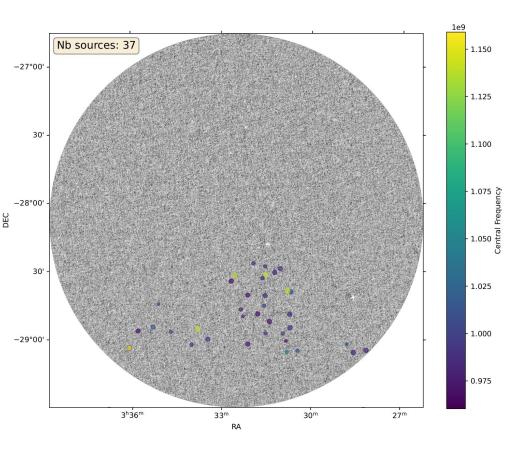


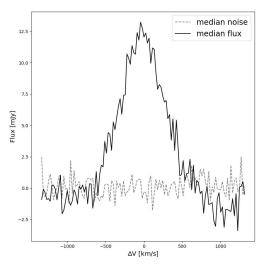
- Matched detections have high confidence scores
- Comparable detections for simple morphologies
- Difficult to characterize complex morphologies (training)
- Systematic difference: w20 and HI size (training)

Preliminary results: Low z cube



Preliminary results: Mid z cube





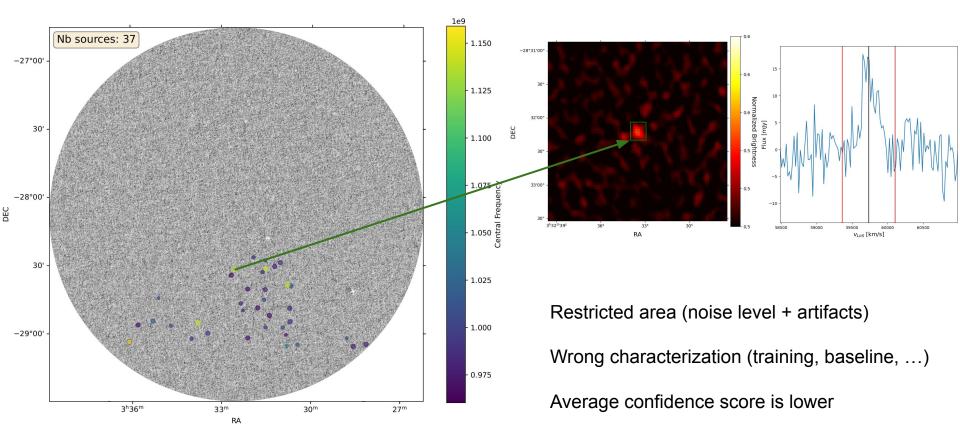
FWHM ~622 km/s

Restricted area (noise level + artifacts)

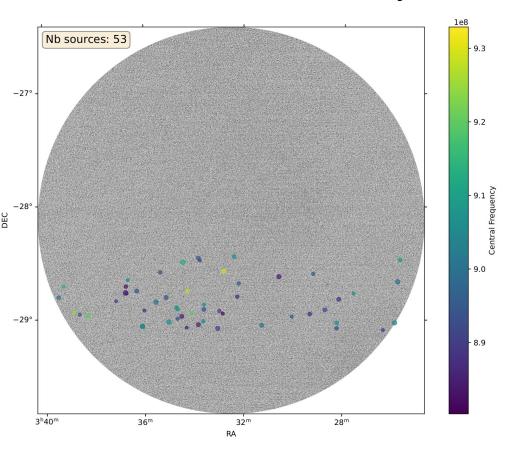
Wrong characterization (training, baseline, ...)

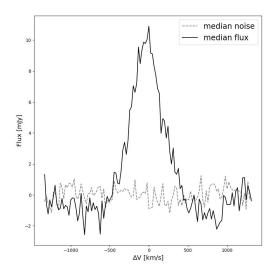
Average confidence score is lower

Preliminary results: Mid z cube



Preliminary results: High z cube



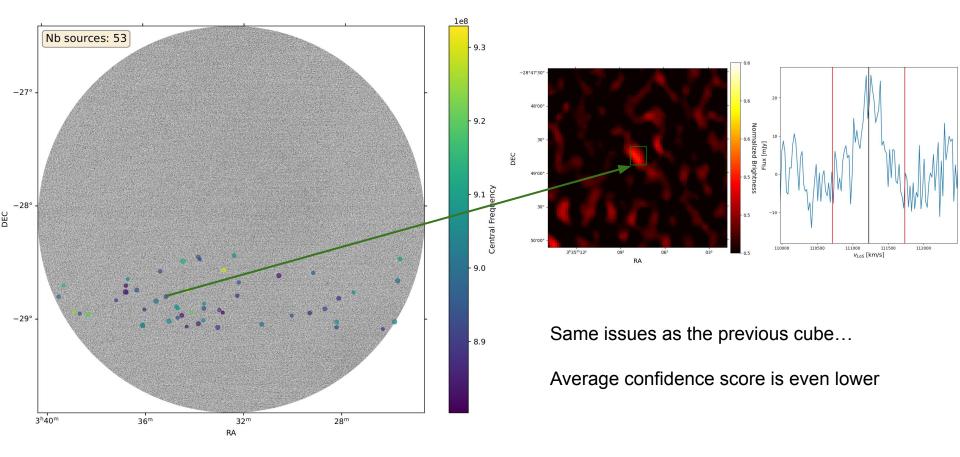


FWHM ~423 km/s

Same issues as the previous cube...

Average confidence score is even lower

Preliminary results: High z cube



LADUMA DR1 summary

Our **YOLO-CIANNA model** with LADUMA DR 1.2 data:

- Quick: Training ~ 10h; Inference ~10 min/cubes
 With Nvidia H100 GPU (Jean-Zay)
- Reliable: Good agreement with DR1 detections Recall ~ 73%; Precision ~ 62%
- 47 new candidates at low z (w.r.t. Lowz catalog dr1)

Direct application of YOLO-CIANNA:

- Low z cube 90%
- Mid z cube 60%
- High z cube 60%

Prospects:

- Better Mid/High z cube pre-processing 25%
- Transfer-Learning approach

To be done

A. Anthore